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This paper presents the results of an attempt to generalize the half-time method
(or generally the fraction-time method) [1] from isothermal to nonisothermal kinet-
ics. In order to do that, one has to consider Ozawa’s reduced time § defined by [2]
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which appears in the integral kinetic equation

F(a)=Af'e*E/RTdr (2)

where a is the cenversion degree, 4 is the pre-exponential factor, E is the activation
energy, ¢ is the time, and F(«a) is the integrated function of conversion [3].

Considering a constant heating rate, a, of the investigated chemical system
(a=dT/dt), from ega. (1) it follows
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or through integration by parts
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where according to Doyle’s approximation the function p(E/RT) is given by [4]

In p( IfT) = —5.330—1 0516EE]—; (5)

for E/RT = 20.
In the framework of the “reaction order” model, F(«) is given by

F(a) = — S SN (6)
(n=D|la=-a)"!
where n is the reaction order. From eqns. (1)-(4) and (6),
1 1 AE [ E
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The fraction-reduced time will now be defined as the reduced time necessary for
the difference (1 — &) to reach the fractionary value f. On the basis of eqn. (3), it is
obvious that every value of the fraction-reduced time is associated with a fraction-
temperature value. 7. necessary for the same difference to reach the value f. For
f=1/2 and 1/4, eqn. (7) becomes respectively
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From eqgns. (8) and (9)
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or. taking into account Doyle’s approximation. eqn. (5)
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On the other hand, the reaction rates at the temperatures 7, ,, and 7, 4, ,,, and
ry .4 are given by

Yy =A e-E/RT"'-:(l/Z)n (12)
rig=Ae FRTA(] /4)" 4
so that

Nz M @ = E/RO/Ty 2= 1/T ) (14)
F1 4 |

Combining eqns. (11) and (14) gives

I "2
" (15)
an—1 _ 1 1.0516
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Using an experimental device able to record the DTG curve, the reaction rates ry ,,
and r, , are easily determined. Then, using eqn. (15), the reaction order, n, can be
evaluated *.

* To solve eqn. (15), a programmable minicomputer might be used.
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For n= 1, instead of egns. (3) and (9) one gets

AE [ E \ _
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aR p('RTl/4) =Ind (17)
or, hsing Doyle’s approximation and taking logarithms
E 1 1
1.0516 = { —— =In2 (18)
R ( T, T,/4)

which allows evaluation ¢.: the activation energy E.

To check the validity of this method, the dehydration of calcium oxalate was used
as a test reaction. For this reaction, according to the literature data, n =1 and
20 < E < 24 kcal mole ~! [5]. Thus, using eqn. (18) £ = 23.7 kcal mole " was found,
in satisfactory agreement with the values reported in the literature.
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